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Abstract – In this research paper, a row of blades which consist of a tuned disk and certain number of blades and will 
be examined. Curved blades that cross a series of free moments of inertia due to bending by cantilevered beams are 
modeled here. Regarding that the disk being tuned, the whole structural and fluid system analysis is focused on a blade 
and the current around it. Aerodynamic forces during stable and unstable motion in several steps are calculated using 
ANSYS / FLOTRAN CFD software and then the real and unreal forces fluid are obtained. On the other hand, 
the equation of motion in Timoshenko beam is obtained and to determine the system natural frequencies and modes, 
outside forces are zero and modal analyses while the bending and torsion movements of exposure mode have been done 
is carried out. By using semi inertia and semi damping and semi elastic of fluid’s elements in inertia and damping and 
stiffness matrix we can have an eigenvalue equation that solved by using state space method. In this case we can obtain 
flatter speed of turbine and then, by calculate flatter speed in little bending of blade and compare with previous state 
effects of blade bending on flatter speed is study. At least bending and torsion deformation are analyzed with respect to 
time. 
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1. Introduction 
 

One of the earlier studies considering airfoil 
geometries was a research done by Whitehead (1962) on 
ideal flows around straight airfoils which have rigid 
translational and torsional oscillations. By 1970, isolated 
airfoil theory of wings was conventionally used 
considering thin and straight airfoil for flutter prediction. 

In compressor and turbine airfoils, a proper camber is 
considered in design with the intent of having pressure 
and suction side. This factor increases radius of gyration 
and also rotary inertia and shear deformation. The 
aerodynamic effects of airfoil camber have already been 
discussed, however with less attention to structural 
behavior. Atassi and Akai (1980) developed a method for 
studying airfoils having thickness and camber and 
concluded that airfoil geometry have considerable effects 
on unsteady aerodynamic loadings.  

FEM approaches were then used in plate or solid 
models of structures by Moffatt and Hi (2003). Plate and 
beam models do not have rotary inertia and shear 
deformation capabilities. Solid models restricted to quasi-
3D flutter analysis and FEM approaches, so Timoshenko 
beam theory is presented, Thereby blades can be analyzed 
analytically and by FEM methods regarding rotary inertia 

and shear deformation. Therefore, some supplementary 
concepts are introduced considering this aspect.    

By introducing Timoshenko beam theory, the effects 
of camber on flutter suppression can be investigated 
considering differences in five aspects: moment of 
inertia, aerodynamic loading, bending/torsion coupling, 
rotary inertia and shear deformation. In this research, 
flutter properties of cambered and uncambered airfoils 
are compared considering all of these factors. 
 
2. Deriving the Equation of Motion by using 
Timoshenko Beam Theory 
 

If in the study of the dynamic behavior of beam, rotary 
inertia and shear deformation are also taken into account, 
then these kinds of beams are modeled as Timoshenko 
beams. 

The governing equation of motion of the beam in 
generalized coordinate (q) can be obtained based on 
Hamilton principle. After simplification, the equation set 
of motion is established as: 

http://www.worldsciencepublisher.org/
mailto:rashidifar_58@yahoo.com
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 Noting the fact that the blades of compressors are 

usually fixed at the roots, overhung boundary conditions 
must be satisfied. 

In eq.1, bending and torsion are coupled to each other. 
Before determining the final equation of the body in 
coupled form, the external forces must be set to zero and 
the above relations are applied in decoupled form for 
determination of natural frequencies and their relating 
modes. The term that contains x  is omitted by shifting 
the x coordinate to the center of the airfoil.  
 
3. Establishment of the Generalized 
Equation in Dynamic and Force Coupling 
Form 
 

In this equation, the bending and torsion and on the 
other hand, force and the relations of motion are coupled. 
In other words, there is force coupling in addition to 
dynamic coupling. 

Based on Rayleigh-Ritz method, w , ψ  and θ are the 
result of their corresponding normal modes superposition. 
Considering one mode 
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yield a set of equations in the form of 
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hm ، θm ، GF ، GM و  B  are the generalized mass in 
bending and torsion, the generalized force in bending and 
torsion and coupling term respectively. Having the mode 
shape from the previous steps, these parameters can be 
achieved.  

In order to simplify the relations and expressing 
clearly and generally, the mode shape of the lateral, 

bending and pitching vibrations are normalized. 
Furthermore, as the thickness and the mass along the span 
are assumed constant in the current report, this equation 
is further simplified by taking m out of the integral and 
dividing the two sides by m. Moreover, assuming a light 
damping of the structure, the damping is also considered 
based on the conventional methods. 

Consequently, the mode shapes are normalized 
without considering inertial factors. 
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The equation set is therefore reduced to        )4 (
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Which are the generalized equation in dynamical and 
force coupling form. In addition, θr  is the radius of 
gyration with respect to the elastic axis. Consequently, 
the dynamical and force coupled equation can be solved. 
However, the natural frequencies of bending and torsion 
and the relevant modes must be computed before 
solution. Methods for computation of these parameters 
will be described in the next section.  
 
4. Calculating Bending Natural Frequencies 
and the Relevant Mode Shapes 
 

In this case, in order to reduce the parameters, and also 
for possibility of converting the results to the desired 
dimensions, the quantities of eq.1 are non-
dimensionalized.  

The first and second relationships of eq.1 are non-
dimensionalized by dividing them by 2/ lIE and 6/ lIE  
respectively and some manipulations. Finally, the 
following set of equation is developed. (The 
dimensionless quantities are denoted by ~ over them.) 
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For determining the natural frequencies of bending, 
the decoupled equation is solved by separation of variable 
methods. A method was introduced by Han et al (1999) 
for modal analysis of Timoshenko beams. Here, the same 
procedure is applied for calculation of bending wave 
numbers (a , b) and  the consecutive natural frequency 
and mode shape. 
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5. Calculating Pitching Natural Frequencies 
and the relevant mode shapes 
 

In order to find the pitching natural frequency, the 
third relation of eq.1 is simplified to the following 
relation by separation of variable technique. 
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Considering the boundary conditions of cantilever 
beams, the natural frequencies and the relevant mode 
shapes can be obtained conveniently. 
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6. Calculation of aerodynamic forces 
 

In this report, aerodynamic analysis is performed by 
taking ANSYS/CFD/ FLOTRAN into account. ANSYS 
is a multiphysics product and one of its features is CFD 
solution of fluid systems by FEM approaches. 
FLOTRAN has a subset named ALE P0F

1
P that can analyze 

the interaction behavior of structures and fluids. ALE a 
conventional term for systems that includes moving 
boundaries between structures and fluids. Utilization of 
ALE can contribute significantly towards incorporating 
this capability in a fully-coupled aeroelastic analysis of 
blades by ANSYS which will be a significant 
improvement in aeroelasticity. 

In aerodynamic analysis of blades, the coordinates of 
airfoil surface is defined at the first step. After that, the 
grids are constructed by FLUID141 elements. Mapped 
meshes are used in order to have symmetrical area and 
the ability to apply periodic boundaries which will be 
described later. In order to have finer grids around 
leading and trailing edges, a deliberate pattern of line 
division is devised. The spanwise lines and inlet and exit 
passages are divided proportionally, so that finer meshes 
are placed around the leading and trailing edges as shown 
in Fig.1. 

 
 

                                                           
1 Arbitrary Lagrangian-Eulerian method 

 

 
 

Figure3 
 2D Mapped meshing of the aerodynamic space around a typical 

blade 
 

The boundaries of the fluid consist of periodic 
boundaries, the blade surfaces, inlet and exit of the fluid. 
The periodic boundaries retain the circumferential nature 
of the problem. Herein, zero interblade phase angle is 
considered for periodic boundaries. If an interblade phase 
angle other than zero is considered, the circumferential 
dimension of the domain in Fig.1 must be stretched 

σπ /2 h  further. h and σ  denote blade pitch and 
interblade phase angle, respectively. There are two 
methods for imposing these kinds of boundary 
conditions; considering two adjacent blades as periodic 
boundaries or considering the middle of two adjacent 
paths around the blade as periodic boundaries. In this 
report, the second method is used, and the periodic 
boundaries are applied at both sides of airfoils in one 
pitch space, so that the space between each blade and its 
corresponding periodic boundaries is equal to 2/h . 

At the inlet, Mach number and the angle of attack are 
known. If just the inlet Mach number is given, the output 
pressure is varied until the inlet Mach number satisfies 
the requirement. For preventing reflection of the entering 
and exiting waves (specially in supersonic flows), these 
boundary conditions must be imposed at a distance far 
from the airfoil that minimizes the influences of these 
reflections. In this schedule, this boundary is taken at one 
chord length far from the leading or trailing edges.  

The most significant part of these boundary conditions 
is determining the condition of the border between the 
fluid and the structure. As stated before, in the current 
analysis, ALE is used for imposing these conditions. This 
is done in time domain by time stepping approach. At 
first, an adequate reduced frequency is assumed as the 
vibration frequency of the blade. The time wave 
corresponding to this frequency is then divided to small 
time steps (each cycle about 100 divisions) and for each 
moment, the horizontal and vertical coordinate of the 
blade is given to the program and the condition of the 
border between the fluid and the structure is therefore 
represented as Tables (Refer to ANSYS help for more 
information). 

In addition, the velocity of the border between the 
fluid and the structure can be calculated by differentiating 
its corresponding displacement value. Then these values 
are given to the software as Tables. The validity of these 
values can be checked by using the menus of the 
software.  
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As the fluid is regarded viscous, no-slip boundary 
condition is considered for the blade surface. 

The final output of this section is the pressure 
distribution of the blade surface which is sufficient for 
computing the aerodynamic forces and moments. Fourier 
transformation is utilized for obtaining the real and the 
imaginary components of these forces during one cycle. 
  

 

  
7. Parametric Substitution of the 
Aerodynamic Forces in Dimensionless 
Equation Set 
 

As the aerodynamic effects on structures are often 
expressed as pressure or force coefficients, it is better to 
non-dimensionalize the other quantities of the equations 
for uniqueness. After the required conversions, the 
generalized aeroelastic equations are rewritten as 
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  For this purpose the two sides of the first relationship 
has been multiplied by 2/ ∞Ub  and the second relation by 

2/1 ∞U . 
 
8. Aerodynamic Forces Generalization 
Method 
 

In the current research, aeroelastic analysis is 
performed by loosely coupled method. At first, the 
aerodynamic forces are written as a function of reduced 
frequency, mode shape and the resulting matrices.     

If these forces are considered constant along the span 
(Otherwise piecewise integration must be used), the final 
formula for obtaining the generalized aerodynamic forces 
is  
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The bending and torsional natural frequencies are then 
orthonormalized by the following relation.                
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By this approach, the terms are simplified to this result 
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9. Establishing aeroelastic equation 
 

In the previous section, a parametric relation was for 
computation of the generalized aerodynamic forces as a 
function of )( pC  which is a representative of the 
aerodynamic forces, thus it is necessary to calculate 

)( pC  by using the existing aerodynamic data. In this 
method, aerodynamic forces are represented as a function 
of reduced frequency by Roger' approximation technique 
in laplace domain. 

∑
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where 1C , 2C and 3C  represent quasi-elastic, quasi-
damping and quasi-inertia coefficients. p  is a laplace 
variable. Also, in order to have more accurate answers, an 
augmented variable is defined as qppq mm ))/(( 2−+= β , 
so this approach can also facilitate aeroservoelasticity 
analysis of turbomachinery blades. 

The aerodynamic coefficients are then calculated at 
several reduced frequencies by the aerodynamic method 
described in this paper, and then Roger’s approximation 
technique is used by applying the method introdued by 
Karadal et al (2007). By applying the approximated 
generalized forces in eq.8, the final aeroelastic equation is 
transferred to the laplace form. i.e. 
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As this aeroelastic equation is non-linear, it must be 
solved by state space approach. so its inverse laplace 
transformation leads to 
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In this research, the solution of the eigenvalue 
equation by state space method is accomplished for 

6=M . 

To find the flutter speed, the inlet fluid velocity and 
thus hk  and θk  are varied until the real part of one of the 
eigenvalues becomes zero. The effects of either hk  or θk  
can be observed in eq.8. The real part of the eigenvalue 
represents the damping ratio and the imaginary part 
represents the damping frequency. The flutter is occurred 
once  0≥µ  . 

Furthermore, for simulation of the dynamic behavior 
of the system, the eigenvector must also be derived. For 
each eigenvalue, the equation  

 

0)( =− xIpA                                                               (14)                                                                                      
 

can be solved for its corresponding eigenvector.  so the 
time evolution of the structure is obtained by this 
formula. 

 

)0()()( 1 xXeXtx t −Λ=                                                  (15) 

Thus, the motion of the generalized coordinate can be 
evaluated versus time. It is obvious that by having the 
mode shapes of bending and torsion described in the 
previous sections, and multiplying them by components 

b
qh  and θq , the equation of motion in each section of 
the blade can be obtained. 

 
10. Aeroelastic analysis by conventional 
method 
 

In this approach that sometime is referred to as double 
scanning method, the frequencies are non-
dimensionalized with respect to the tosional natural 
frequencies. The earoelastic quantities of this method are 
non-dimensionalized by dividing eq.4 by 2

θω . 
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After substitution, this general relationship is achieved.  
 

0=++ XKXBXM                                 (16)  
According to this method, the flutter speed can be 

achieved by trial of various k  values for a constant mass 
ratio. 
 
11. CLACULATIONS AND DISCUSSIONS 

 
A tuned bladed disk system of a gas turbine 

compressor made of tenth standard configuration airfoil 
is subjected to an upstream air flow. The flutter velocity 
and the relevant equation of motion are desired. Also, the 
difference of aeroelastic behavior between two blades 
with cambered and uncambered airfoil but with equal 
area will be discussed. In tenth standard configuration, 
the thickness distribution is represented by this equation. 

 

10)036.1843.2

516.326.1969.2()(
43

25.0

≤≤−+

−−=

xxx

xxxHxT T                      (17)        

where TH  is the nominal blade thickness. The camber 
distribution is given by 
 

{ } 10)5.0()( 22 ≤≤−−+−= xxRRHxC C            (18)                                                                                      
where CH (>0) denotes the height of the camber-line at 
midchord and R  is the radius of the circular arc 
camberline and equals 
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C
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H
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2
25.02 +

=                                                             (19)  

In this aeroelastic case, the structure characteristics are 
given as follows; 

 
l=span=0.12 m blade span               

3/4460 mkgs =ρ  density of the structure    
E=114 G Pa   module of elasticity           
υ=0.31 Poisson’s ratio 

1.7556=γ  shear coefficient      
G = 4.3511e10 shear modulus 

06.0=TH , 05.0=CH  in cambered airfoil     
x∀ : 0)( =xC  in uncambered airfoil  

0015.0
0015.0

=
=

t

h

ς
ς

 Damping ratio of bending and 
torsion 

 
The characteristics of this cambered airfoil are 

equivalent to NACA0006 airfoil. 
 

12. Natural frequency calculation 
 

In order to determine the area and the moment of 
inertia, a program named Resone was provided in 
MATLAB and the data pertaining to the thickness 
distribution and the camber of airfoil was given to it.  

 
Uncambered Airfoil 
 
A = 4.0815e-004      the airfoil area  
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Determination of the elastic center (shear center): By 
taking 0)( =xC for every x in eq.18, one can conclude 
that  
  

centeracentera yyxx ==   
 

The elastic center is moved towards x axis to the 
decoupling point at which the z coordinate is the same as 
the center. The coordinate of the decoupling point is  

intpoelasticocentero zzxx ==  
Moments of inertia of the airfoil surface with respect to 
the decoupling point is 
Ix_elastic = Ixo=8.4661e-10 
r_torsion = 0.0233  with respect to the elastic center 
r_h =   0.0014 (with respect to the x axis) 
The ratio of the radius of gyration to the span (non-
dimensional radius of gyration) is 
 

0.0120
/

==
l

AI
k

sox
 

 
Cambered Airfoil 
 

For cambered airfoil, the previously stated quantities 
are 

 
A = 4.1013e-004 
x_centr = 0.0418 
z_centr =   0.0038 
Ix_elastic = 2.0643e-9 
r_h = 0.0022 
r_t = 0.0249 

0.0187=k  
 

The airfoil area is approximately the same in both 
cases. However, the moments of inertia due to the 
increment of the airfoil camber are greatly changed. 

A code named Rezone was provided based on the 
equation set provided by Kardal et al (2007) which was 
solved by numerical approach; thereby solution of these 
equations yields wave numbers. Hence,  a, b and nω  can 
be obtained as a function of the radius of gyration. 

In the post processing step of this code, the natural 
frequencies can be plotted with respect to the radius of 
gyration in the case of cambered and uncambered airfoil. 
Fig.2 shows typically the variation of natural frequency 
with respect to non-dimensional radius of gyration. 
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Figure 2 

 The first natural frequencies of Euler-Bernoulli and 
Timoshenko beam models for the specified cambered airfoil 

 
In addition, the first wave numbers and natural 

frequencies are listed Table 3 and Table 4. The difference 
of these two cases indicates the great effect of camber on 
natural frequency. 

Table 1 
 Wave number and natural frequencies of the blade with 

uncambered airfoil 
Wave numbers of 

Timoshenko 
model 

)/(1 sradsω  

    a    b Timoshenko Euler- 
Bernoulli 

 1.8747 1.8728  1773.4934    1775.9100 
 
 

Table 2 
 Wave numbers and natural frequencies of the blade with 

cambered airfoil 
Wave numbers 
of Timoshenko 

model 
)/( sradsω  

    a    b Timoshenko Euler- Bernoulli 
1.8742 1.8696 2757.2796 2766.3820 

   
For verification of the frequencies resulting from 

Rezone code, the natural frequency of cambered airfoil 
obtained by this code was compared with the result 
obtained by ANSYS. The output of Rezone was 
consistent with what achieved by ANSYS. The procedure 
to analyze the structural model by ANSYS was as 
follows; Element BEAM44 was used for modeling 
Timoshenko beam. Concerning the capabilities of this 
element, the value of Poisson’ ratio was given to this 
program so that the shear deformation can be considered. 
Furthermore, in order to take the rotary inertia into 
account, a rectangular section whose area equals the 
airfoil area was generated and then meshed with fine 
grids. 

In Euler-Bernoulli beams, element BEAM54 is used 
and the Poisson’s ratio was considered zero so that the 
effects of rotary inertia and shear deformation were 
ignored. The results were 

 

sRads /6826.27591 =ω Timoshenko model 
sRads /7184.27661 =ω Euler-Bernoulli model  

 

which agree with the Rezone output. 

Moreover, the torsional natural frequency of the blade 
was achieved by eq.7 which results 
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rad/s.40885.8454=tsω  
In order to verify the results of torsional natural 

frequency, the modal analysis of the blade was performed 
by ANSYS. In this model, the length of the blade was 
subdivided by 100 nodes. Then elements COMBINE14 
which have stiffness was placed between each two nodes 
and elements MASS21 which consist of moment of 
inertia were defined for each node (except the node 
placed on the root of the blade).  

Note that the distance between the first node and the 
blade root and so the moment of inertia is half of the 
other intervals, so the stiffness of this element is two 
times of the other. By this procedure the following first 
natural frequency was obtained for torsional frequency.  

rad/s7011.41292=tsω  
which was consistent with the previously calculated 
result. 
 
13. Calculation of the aerodynamic forces by 
applying the program provided by ANSYS 
 

As the bladed disk system (Blisk) was assumed to be 
tuned, the analysis was simplified to a single blade and its 
surrounding aerodynamic spaces. To determine the 
aerodynamic forces, the characteristics of the airfoil 
specified so far was entered to the code named Vazan that 
was written in ANSYS/FLOTRAN. This code was 
executed at several reduced frequencies. In this step, the 
condition of the problem solution was determined and the 
fluid was introduced to Vazan as gas, then some 
appropriate commands were issued so that the properties 
can be varied as a function of temperature and pressure. 
However, as predicted, it was observed in this report that 
the variation of density and viscosity was negligible.  As 
in many other references, the initial conditions and the 
inlet properties of the fluid were considered 10 angle of 
attack, 0.7 inlet Mach number and standard condition. 

The Reynolds number may exceeds the laminar flow 
threshold, because flutter may takes place in a free stream 
velocity which is in transonic or supersonic condition, 
although the fluid enters the blade path in a low angle of 
attack, so the turbulence of the flow was also introduced 
to the program. There are various models of turbulence in 
ANSYS such as ε−k , ω−k and combination of them. 
Some tests were accomplished, and it was observed that 

ε−k  model is the most adequate. 
The solution of the problem is also done in time steps, 

thus the output of this code is pressure distribution in 
each time step, and the force (lift) and the aerodynamic 
moment coefficient of the entire model was computed at 
every time step of the cycle by using the pressure 
distribution obtained from the previous step. The real and 
imaginary components of the lift and aerodynamic 
moment coefficients were obtained by Fourier 
transformation, in both of cambered and uncambered 
airfoil cases. The results are demonstrated in Tables 3 to 
6. 

 
Table 3 

 The values of forces and moments applied on the uncambered 
airfoil in bending oscillation 

Moment 
coefficient 

Lift coefficient Reduced 
frequency 

-9.8707E-04 
+3.3168E-03i 

0.17765 
-0.11783i 0.25 

-2.2700E-03  
+8.3711E-03i 

0.72614     
-0.31617i 0.50 

-1.0045E-03  
+1.2667E-02i 

1.6327 
-0.63079i 0.75 

1.5441E-03 
+1.6922E-02i 

2.9793  
-1.1387i 1.00 

6.3903E-03 
+2.1186E-02i 

5.0791 
-1.8442i 1.25 

1.3635E-02  
+2.3231E-02i 

7.3461 
-2.5477i 1.50 

 
Table 4 

  The values of forces and moments applied on the uncambered 
airfoil in torsional oscillation 

 
Moment 

coefficient Lift coefficient 
Reduced 

frequency 

 1.9211E-04 
-2.7123E-05i 

-4.1929E-03 
-1.3187E-02i 0.25 

5.6821E-04 
-1.8174E-04i 

-9.0745E-03 
-2.6261E-02i 0.5 

1.0488E-03 
-3.6724E-04i 

-1.4538E-02 
-3.8987E-02i 0.75 

1.5671E-03 
-5.0427E-04i 

-1.4391E-02 
-5.6590E-02i 1.0 

2.3474E-03 
-7.6659E-04i 

-1.2532E-02 
-7.3824E-02i 1.25 

3.2021E-03 
-9.8503E-04i 

-1.5819E-02  
-8.4071E-02i 1.5 

 
Table 5 

 The values of the forces and moments applied on the cambered 
airfoil in bending oscillation 

 
Moment 

coefficient 
Lift coefficient Reduced frequency 

-6.1341E-04  
+3.5263E-03i 

0.17124  
-0.11408i 0.25 

-1.9681E-03  
+8.8104E-03i 

0.71264     
-0.31106i 0.50 

-8.2827E-04  
+1.3378E-02i 

1.6100 
-0.61952i 0.75 

1.8875E-03 
 +1.7683E-02i 

2.9457  
-1.1341i 1.00 

5.8285E-03 
 +2.0104E-02i 

4.7458 
-1.7184i 1.25 

1.1751E-02  
+2.2083E-02i 

6.8503 
-2.3670i 1.50 

 
Table 6 
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 The values of forces and moments applied on the cambered 
airfoil in torsional oscillation 

 
Moment 

coefficient 
Lift coefficient Reduced 

frequency 

1.9841E-04 
-3.9452E-05i 

-3.2311E-03 
-1.4350E-02i 0.25 

5.7089E-04 
-2.1586E-04i 

-8.8571E-03 
-2.6821E-02i 0.50 

1.0875E-03 
-3.9875E-04i 

-1.6302E-02 
-4.1274E-02i 0.75 

1.5640E-03 
-4.8191E-04i 

-1.4495E-02 
-6.2360E-02i 1.00 

2.1518E-03 
-6.9381E-04i 

-8.8248E-03 
-7.1010E-02i 1.25 

2.9653E-03 
-8.8725E-04i 

-1.4690E-02 
-7.7265E-02i 1.50 

 
To verify the results, a typical real and imaginary 

chordwise pressure distribution at bending reduced 
frequency of 0.5 and Mach number of 0.7 and unit 
oscillation amplitude was calculated by Vazan. On the 
other hand, at the same condition, the pressure 
distribution was derived from spectrum code which was 
introduced by Lawrence et al (2000) and the lift and 
moment coefficient were calculated by geometrical 
methods which agreed with Vazan.  

 
14. Investigating the effects of camber on 
flutter characteristics of blades 
 

This part is devoted to the computation of flutter speed 
and its corresponding frequency with the results of 
structural and aerodynamic analysis, and the aeroelastic 
behavior of cambered airfoils with uncambered ones was 
performed by considering four characteristics: radius of 
gyration, variation of aerodynamic loading, 
torsion/bending coupling, and Timoshenko beam factors. 

For this task, the aeroelastic behavior of the blade with 
uncamberd airfoil was determined at first. After that, the 
above mentioned aspects were considered, and the 
corresponding aeroelastic equation was solved, and the 
normalized bending and torsional mode shapes of the 
structure were obtained. The aerodynamic loading terms 
were then substituted in the main aeroelastic equation as 
a function of reduced frequency. Afterwards, the final 
equation was solved by state space approach and utilizing 
augmented state vector, so that the eigenalues were 
obtained. The free stream velocity was then increased so 
that at a certain velocity the real component of the 
eigenvalue became zero. This velocity is termed flutter 
speed, and the imaginary part of the eigenvalue is the 
flutter frequency. This procedure was repeated for each 
case. The results of these computations are shown in the 
following Table 11. The second row of this table consists 
of the aeroelastic results via the effects of airfoil camber 
on aerodynamic loading, radius of gyration, and 
bending/torsion coupling. The third one indicates the 
effects of rotary inertia and shear deformation due to 
airfoil camber on flutter characteristics.  

 
Table 7 

 Flutter characteristics of the specified blade with cambered 
airfoil in comparison with uncambered airfoil 

Structural Model  Flutter 
Characteristics 

Uncambered Airfoil Using 
Timoshenko Theory  

101.8153=flutterU

 1693.9985r =flutteω
 

Cambered Airfoil Using Euler-
Bernoulli Beam Theory  

138.4768=flutterU

  2689.8405r =flutteω
 

Cambered Airfoil Using 
Timoshenko Beam Theory  

140.1095=flutterU

2682.0449r =flutteω
 

 
Root locus plots of the eigenvalues in cambered airfoil 

are also demonstrated in Fig.3.  
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Figure 3 

 Root locus plot of the eigenvalues of the specified blade with 
cambered airfoil by the application of Timoshenko theory 
 

In higher modes the flutter occurs at very high speed 
so that the free stream velocity does not have physical 
meaning. In addition, the flutter of the first mode is 
predominant, because the problems pertaining to flutter 
do not actually allow the speed to rise up to the higher 
modes. For example the second flutter characteristic of 
this typical case with cambered airfoil by Timoshenko 
theory is 

smV /2876.1233= ,  sRad /16094.6144=ω . 
 

15. Comparison of the final results with 
conventional method 
 

For verifying the final results, the flutter equation in 
the first mode of Timoshenko model was rewritten based 
on eq.16, and the equation was solved by state space 
approach and by trying different values of k until an 
adequate value was determined at which the real part of 
the eigenvalue tends to zero. 

The aerodynamic forces were calculated in two 
assumed condition and the resulting eigenvalues were 
obtained from eq.16. Interpolation of these reduced 
frequencies and their flutter speeds were then fed into 
Vazan code whose output is entered into the earoelastic 
equation 16. Next, the flutter speed was estimated by this 
relationship. 
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As the result shows, the flutter speed converges back 
to the value determined by Roger’s approximation and 
the real part tends to zero at a moderately low rate. By 
continuing the iterations, more accurate results will be 
obtained. However, the above flutter velocity agrees the 
Roger’s approximation solution which was achieved at 
the previous section.  

 
16. Determining and plotting the equations of 
motion 
 

It was assumed that the start of excitation is at zero 
)0( =t of the time range considered. With the initial 

condition 
 

.1)0(,1)0( ==== tqtq th  
the plunging and pitching displacements of the 
generalized coordinates of the blade are plotted versus 
time at the flutter as shown in Fig.4 and Fig.5.   
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Figure 4 

 Time simulation of Pitching/Plunging vibration of the blade 
with uncambered airfoil by Timoshenko beam theory at flutter 

)/ 101.8153( smU =∞ , Rad/s) 1693.9985( =ω  
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Figure 5 

 Time simulation of Pitching/Plunging vibration of the blade 
with cambered airfoil by Timoshenko beam theory at flutter 

)/140.1095( smU =∞
P

, 
P Rad/s) 2682.0449( =ω  

 
As shown in Fig.4 and Fig.5, the plunging motions are 

predominant and the motions of the other degrees of 
freedom will cease after elapsing some cycles. Thus, the 
relations were simplified, and after simplifying the terms 
and multiplying them by the mode shapes, the following 
equations of motion were achieved; 

The final equation of plunging motion of the blade 
having cambered airfoil by using Timoshenko theory is 

).04.2682cos(1583.1)]5933.15cosh(2.8688
)5933.15sinh(2.1027)6208.15cos(2.8688

)6208.15sin(2.1131[)()(),(

ty
yy

ytqytyh h

×+
−−

==ϕ
         (20)                                  

The final equation of pitching motion of the blade having 
cambered airfoil by using Timoshenko theory is 

).04.2682cos(1009.4

)
24.0

sin(6667.16),(

5 t

yty

−××

=
πθ

                                     

 (21)                                           

 
17. Conclusion 
 

1- Elastic effects: Increment of the radius of 
gyration by giving camber to the midline of the 
airfoil led to the natural frequency increment, 
thereby rising flutter velocity (elastic effects). 

2- Dynamic effects: Airfoil camber increased 
rotary inertia and shear deformation, and 
bending/torsion coupling, thereby reducing 
flutter velocity, but had less effect than elastic 
factors. 

3- Generally, adequate camber of the airfoil makes 
flutter suppression besides increasing 
aerodynamic efficiency. 
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